measurement of diffraction intensities, Dr M. R. Truter for advice and encouragement, and the Royal Society for some equipment.

References

Abrahamsson, S. (1959). Ark. Kemi, 14, 65-83.
Abrahamsson, S., Dahlén, B. \& Pascher, I. (1977). Acta Cryst. B33, 2008-2013.
Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Anderson, R. C. \& Fraser-Reid, B. (1975). J. Am. Chem. Soc. 97, 3870-3871.
Brookes, D., Tidd, B. K. \& Turner, W. B. (1963). J. Chem. Soc. pp. 5385-5391.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Germain, G., Main, P. \& Woolfson, M. M. (1970). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures. Univs. of York, England, and Louvain, Belgium.

Harris, E. J. \& Wimhurst, J. M. (1973). Nature (London) New Biol. 245, 271.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Karle, J. \& Karle, I. L. (1965). Computing Methods in Crystallography, edited by J. S. Rollett, ch. 17. Oxford: Pergamon Press.
Larsson, K. (1965). Ark. Kemi, 23, 35-56.
Moews, P. C. \& Knox, J. R. (1976). J. Am. Chem. Soc. 98, 6628-6633.
Owen, J. D. (1975). Programs adapted for the ICL4/70 computer. Rothamsted Experimental Station, Harpenden, England.
Segerman, E. (1965). Acta Cryst. 19, 789-796.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Truter, M. R. (1976). Calcium in Biological Systems. Symposium of the Society for Experimental Biology, No. XXX, pp. 19-40.
X-RAY ARC (1973). Library of programs for the IBM 1130 computer. World List of Crystallographic Computer Programs. J. Appl. Cryst. 6, 309-346.

The Crystal and Molecular Structure of Decaphenylcyclopentasilane, $\mathrm{C}_{60} \mathbf{H}_{50} \mathrm{Si}_{5}$

By LÁSZLÓ PÁRKÁNYI
Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525-Budapest, POB 17, Hungary
KÁlmÁn SASVÁri*
Physics Department, University of York, York YO1 5DD, England
and Jean Paul Declerce and Gabriel Germain
Laboratory of Chemical Physics and Crystallography, University of Louvain, B-1348 Louvain-la-Neuve, Belgium

(Received 15 May 1978; accepted 1 August 1978)
$\mathrm{C}_{60} \mathrm{H}_{50} \mathrm{Si}_{5}$ is monoclinic, space group $C 2 / c$, with $a=39.721$ (8), $b=12.862$ (3), $c=22.701$ (4) $\AA, \beta=$ $99.62(2)^{\circ}, Z=8$. The structure was refined to $R=0.113$ for 5504 non-zero reflections. The nucleus of the molecule is a five-membered Si ring puckered in a form intermediate between C_{s} and C_{2} symmetry. The $\mathrm{Si}-\mathrm{Si}$ lengths vary between 2.371 and $2.413 \AA$ (average $2.396 \AA$) and the $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ angles between 102.7 and 106.7° (average 104.5°). The $\mathrm{Si}-\mathrm{C}$ lengths range from 1.869 to $1.917 \AA$ (average $1.895 \AA$). The planes of the $\mathrm{Si}-\mathrm{C}$ bond pairs of the SiPh_{2} groups are almost perpendicular to the adjoining $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ plane with a maximum deviation of 10.5°.

Introduction

The nucleus of decaphenylcyclopentasilane (DPHCPSI) is a five-membered Si ring similar to

[^0]gaseous cyclopentasilane, $\mathrm{Si}_{5} \mathrm{H}_{10}$, which has been studied by electron diffraction (Smith, Seip, Hengge \& Bauer, 1976). An analysis of the decaphenyl derivative was carried out to determine the conformation of the cyclopentasilane ring and the $\mathrm{Si}-\mathrm{Si}$ lengths in a system where ring strain is likely to be greater than in cyclopentasilane but smaller than in octaphenylcyclotetrasilane (OPHCTSI: Párkányi, Sasvári \& Barta, 1978).

Experimental

Crystals were obtained from benzene/ethanol as thin transparent plates. Crystal data are: $a=39.721$ (8), $b=12.862$ (3), $c=22.701$ (4) $\AA, \beta=99.62(2)^{\circ}, V=$ $11434.7 \AA^{3}, \mathrm{C}_{60} \mathrm{H}_{50} \mathrm{Si}_{5}, M_{r}=911.483, D_{x}=1.059$, $D_{m}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha, \lambda=0.71069 \AA)=1.60$ cm^{-1}, space group $C 2 / c, Z=8$. The intensities of 6125 independent reflections, of which 2089 were unobserved $\left[F_{o} \leq 5 \sigma\left(F_{o}\right)\right.$, were collected on a Syntex $P 2_{1}$ automatic four-circle diffractometer with monochromated Mo K r radiation. 621 reflections with $I \leq 0$ were omitted from the refinement to reduce computing time. Cell parameters and their e.s.d.'s were calculated from diffractometer data by least squares. The space group was determined from systematic absences. After data reduction the absolute scale and approximate temperature factor ($B=3.7 \AA^{2}$) were obtained from a Wilson plot using all reflexions. No absorption correction was made.

Determination and refinement of the structure

The phase problem was solved with MULTAN 77 (Main, Woolfson, Lessinger, Germain \& Declercq,
1977). E values were calculated from the molecular scattering factors of the SiPh groups and Si_{5} ring (Main, 1976); the K curve (Karle, Hauptman \& Christ, 1958) was applied in the scaling procedure. 400 reflections ($|E| \geq 1.83$) and 3200 sign relationships

Fig. 1. A view of the molecule, with the atomic numbering, projected on to the best plane of the cyclopentasilane ring. H atoms are omitted for clarity.

Table 1. Final fractional coordinates $\left(\times 10^{4}\right)$ for the non-hydrogen atoms

	x	y	z		x	y	z
$\mathrm{Si}(1)$	1913 (1)	5760 (2)	1379 (1)	C(34)	786 (4)	4211 (15)	3457 (7)
$\mathrm{Si}(2)$	1744 (1)	5422 (2)	2314 (1)	C(35)	1002 (4)	4558 (12)	3055 (6)
Si(3)	1162 (1)	5967 (3)	2151 (1)	C(36)	1149 (3)	7427 (9)	2200 (6)
Si(4)	937 (1)	5328 (3)	1169 (1)	C(37)	1232 (4)	7901 (11)	2740 (7)
$\mathrm{Si}(5)$	1420 (1)	5339 (3)	650 (1)	C(38)	1214 (5)	8977 (15)	2808 (10)
C(6)	2312 (3)	5029 (9)	1267 (5)	C(39)	1122 (5)	9576 (14)	2300 (11)
C (7)	2400 (3)	4893 (10)	710 (5)	C(40)	1052 (7)	9136 (16)	1755 (10)
C(8)	2706 (3)	4490 (10)	622 (6)	C(41)	1065 (5)	8045 (12)	1702 (8)
C(9)	2938 (3)	4198 (10)	1115 (6)	C(42)	750 (3)	3979 (10)	1273 (5)
$\mathrm{C}(10)$	2858 (3)	4290 (10)	1680 (6)	C(43)	844 (3)	3055 (11)	1019 (6)
C(11)	2552 (3)	4693 (9)	1757 (5)	C(44)	697 (4)	2114 (12)	1127 (7)
C(12)	2006 (3)	7177 (9)	1267 (5)	C(45)	431 (4)	2112 (13)	1481 (7)
C(13)	1932 (3)	7962 (9)	1647 (5)	C(46)	339 (4)	2982 (14)	1732 (7)
C(14)	2005 (4)	9013 (11)	1532 (7)	C(47)	496 (4)	3903 (12)	1619 (6)
C(15)	2153 (4)	9281 (11)	1052 (7)	C(48)	552 (3)	6083 (10)	769 (5)
C(16)	2239 (4)	8496 (12)	671 (7)	C(49)	351 (5)	6636 (18)	1060 (7)
C(17)	2172 (4)	7471 (10)	784 (6)	$\mathrm{C}(50)$	35 (5)	7042 (20)	787 (9)
$\mathrm{C}(18)$	1787 (3)	3961 (9)	2435 (5)	C(51)	-56 (4)	6949 (16)	208 (8)
$\mathrm{C}(19)$	1558 (3)	3272 (11)	2073 (6)	C(52)	143 (6)	6388 (22)	-91 (8)
C(20)	1585 (4)	2224 (11)	2142 (7)	C(53)	439 (4)	5973 (17)	181 (7)
C(21)	1817 (4)	1788 (10)	2577 (6)	C(54)	1399 (3)	6404 (11)	64 (5)
C(22)	2052 (3)	2436 (11)	2934 (5)	C(55)	1266 (4)	7373 (11)	127 (7)
C(23)	2029 (3)	3525 (9)	2860 (5)	C(56)	1309 (5)	8185 (14)	-265 (9)
$\mathrm{C}(24)$	2006 (3)	6055 (9)	2983 (5)	C(57)	1487 (5)	8000 (15)	-739 (8)
C(25)	2323 (3)	6532 (9)	2967 (5)	C (58)	1618 (5)	7007 (14)	-812 (7)
C(26)	2518 (3)	6911 (9)	3479 (6)	C(59)	1579 (4)	6231 (12)	-424 (6)
C(27)	2410 (3)	6846 (10)	4023 (5)	C(60)	1440 (3)	4026 (10)	263 (5)
C(28)	2095 (3)	6414 (10)	4057 (5)	C(61)	1216 (3)	3849 (11)	-265 (6)
C(29)	1892 (3)	5996 (10)	3543 (5)	C(62)	1199 (4)	2834 (15)	-497 (7)
C(30)	914 (3)	5478 (10)	2725 (5)	C(63)	1398 (4)	2027 (12)	-239 (8)
C(31)	612 (4)	6044 (15)	2806 (7)	C(64)	1623 (4)	2225 (11)	276 (7)
C(32)	404 (4)	5631 (19)	3203 (8)	C(65)	1646 (3)	3201 (10)	524 (6)

were used. The E map calculated with the sign set of the highest combined figure of merit revealed the positions of all Si and 23 C atoms. A weighted Fourier synthesis calculated with the phases obtained from the previous 28 atoms revealed all the remaining nonhydrogen atoms. The parameters of the non-hydrogen atoms were refined by anisotropic least squares. SHELX 77 (Sheldrick, 1977) was used first, but as a convergent refinement could only be achieved with unit weights, refinement was repeated with XRAY 72 (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) and Cruickshank's (1961) weighting scheme. The H atoms were generated geometrically and were included in fixed positions. The final structure factor calculation gave R values of 0.095 and 0.113 for 4036 observed and 5504 non-zero reflections respectively. The final coordinates of the non-hydrogen atoms are listed in Table 1. The scattering factors were from Cromer \& Mann (1968).*

Discussion

The molecule with the numbering of the atoms is shown in Fig. 1. Relevant bond lengths and angles are given in Tables 2 and 3.

The nucleus of the molecule is a puckered fivemembered Si ring. The puckering is indicated by the endocyclic torsion angles (Table 4). The ring conformation is intermediate between C_{s} and C_{2} symmetry with the following asymmetry parameters (Duax, Weeks \& Rohrer, 1976): $\Delta C_{s}[\operatorname{Si}(2)]=9.0$ and $\Delta C_{2}[\operatorname{Si}(5)]=$ $9 \cdot 3$; the pseudorotation phase angle (Altona, Geise \& Romers, 1968) $\Delta=-15.9^{\circ}$ [if φ_{0} is assigned to the rotation about $\mathrm{Si}(2)-\mathrm{Si}(3)]$.

The $\mathrm{Si}-\mathrm{Si}$ lengths range from 2.371 to $2.413 \AA$ (average $2.395 \AA$), which is somewhat longer than in 1,2,3,4-tetra-tert-butyltetramethylcyclotetrasilane

[^1]Table 2. Relevant bond lengths (\AA) with their e.s.d.'s in parentheses

$\mathrm{Si}(1)-\mathrm{Si}(2)$	$2.37 \mathrm{I}(3)$	$\mathrm{Si}(2)-\mathrm{C}(24)$	$1.877(\mathrm{I} 1)$
$\mathrm{Si}(2)-\mathrm{Si}(3)$	$2.385(5)$	$\mathrm{Si}(3)-\mathrm{C}(30)$	$1.869(12)$
$\mathrm{Si}(3)-\mathrm{Si}(4)$	$2.404(3)$	$\mathrm{Si}(3)-\mathrm{C}(36)$	$1.882(12)$
$\mathrm{Si}(4)-\mathrm{Si}(5)$	$2.413(5)$	$\mathrm{Si}(4)-\mathrm{C}(42)$	$1.917(13)$
$\mathrm{Si}(5)-\mathrm{Si}(1)$	$2.405(4)$	$\mathrm{Si}(4)-\mathrm{C}(48)$	$1.908(12)$
$\mathrm{Si}(1)-\mathrm{C}(6)$	$1.896(12)$	$\mathrm{Si}(5)-\mathrm{C}(54)$	$1.902(13)$
$\mathrm{Si}(1)-\mathrm{C}(12)$	$1.885(11)$	$\mathrm{Si}(5)-\mathrm{C}(60)$	$1.911(13)$
$\mathrm{Si}(2)-\mathrm{C}(18)$	$1.903(11)$		

(2.377 \AA; Hurt, Calabrese \& West, 1975) and in OPHCTSI (2.377 Å; Párkányi et al., 1978), where these bonds have equal lengths. These findings seem to agree with the results of quantum-chemical calculations (Nagy, 1977); i.e. the $\mathrm{Si}-\mathrm{Si}$ bond order in polysilanes decreases with the degree of oligomerization. This conclusion is not supported, however, by the considerably shorter $\mathrm{Si}-\mathrm{Si}$ bond ($2.342 \AA$) found in gaseous cyclopentasilane (Smith et al., 1976). This latter value is similar to results obtained for $\mathrm{Si}-\mathrm{Si}$ bonds in disilanes studied by electron diffraction ($2.340 \AA$; Beagley, Monaghan \& Hewitt, 1971) and by microwave spectroscopy ($2.332 \AA$; Cox \& Varma, 1966). The $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ angles vary between 102.7 and 106.7° (average 104.5°), which agrees well with the mean value $\left(104 \cdot 2^{\circ}\right)$ reported for cyclopentasilane.

The $\mathrm{Si} \cdots$ Si non-bonded distances (Table 5) are considerably longer than those in OPHCTSI ($3 \cdot 35 \AA$) because of ring puckering. The planes of the $\mathrm{Si}-\mathrm{C}$ bond pairs at each Si atom are nearly perpendicular to the corresponding $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ plane or to the best plane of the Si_{5} ring (Table 6). For all $\mathrm{Si}-\mathrm{C}$ bond pairs the

Table 3. Relevant bond angles $\left(^{\circ}\right)$ with their e.s.d.'s in parentheses

(2)	104.8 (2)	C(24)	
$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)$	102.7 (3)	$\mathrm{Si}(3)-\mathrm{Si}(2)-\mathrm{C}(18)$	112
$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	104.1 (3)	$\mathrm{Si}(3)-\mathrm{Si}(2)-\mathrm{C}(24)$	113.0
(3) $-\mathrm{Si}(4)-\mathrm{Si}(5)$	104.4 (2)	$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{C}(30)$	113.8 (8)
(4)-Si(5)-Si(1)	106.7 (3)	$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{C}(36)$	108.6 (7)
(6)-Si(1)-C(12)	105.9 (10)	$\mathrm{Si}(4)-\mathrm{Si}(3)-\mathrm{C}(30)$	112.0 (7)
(18)-Si(2)-C(24)	106.7 (10)	$\mathrm{Si}(4)-\mathrm{Si}(3)-\mathrm{C}(36)$	112.7 (7)
(30)-Si(3)--C(36)	$105 \cdot 8$ (11)	$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{C}(42)$	106.7 (7)
$\mathrm{C}(42)-\mathrm{Si}(4)-\mathrm{C}(48)$	102.9 (11)	$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{C}(48)$	114.3 (7)
(54)-Si(5)-C(60)	108.4 (12)	$\mathrm{Si}(5)-\mathrm{Si}(4)-\mathrm{C}(42)$	114.9 (8)
$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{C}(6)$	113.5 (7)	$\mathrm{Si}(5)-\mathrm{Si}(4)-\mathrm{C}(48)$	113.8 (8)
$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{C}(12)$	106.3 (7)	$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{C}(54)$	113.6 (8)
$\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{C}(6)$	113.4 (8)	$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{C}(60)$	108.5 (7)
$\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{C}(12)$	112.9 (7)	$\mathrm{Si}(1)-\mathrm{Si}(5)-\mathrm{C}(54)$	104.8 (7)
$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{C}(18)$	$106 \cdot 2$ (7)	$\mathrm{Si}(1)-\mathrm{Si}(5)-\mathrm{C}(60)$	$115 \cdot 1$ (7)

Table 4. Torsion angles $\left({ }^{\circ}\right)$ in the Si_{5} ring

$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	$41 \cdot 9$
$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)$	$-30 \cdot 2$
$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	$7 \cdot 3$
$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)$	$18 \cdot 4$
$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)$	$-37 \cdot 0$

Table 5. Si-Si non-bonded distances (\AA) and their inclination angles $\left(^{\circ}\right)$ in the Si_{5} ring

$\mathrm{Si}(1)-\mathrm{Si}(3)$	3.713	$\mathrm{Si}(1)-\mathrm{Si}(3)-\mathrm{Si}(5)$	37.3
$\mathrm{Si}(3)-\mathrm{Si}(5)$	3.805	$\mathrm{Si}(3)-\mathrm{Si}(5)-\mathrm{Si}(2)$	36.6
$\mathrm{Si}(5)-\mathrm{Si}(2)$	3.783	$\mathrm{Si}(5)-\mathrm{Si}(2)-\mathrm{Si}(4)$	37.2
$\mathrm{Si}(2)-\mathrm{Si}(4)$	3.776	$\mathrm{Si}(2)-\mathrm{Si}(4)-\mathrm{Si}(1)$	36.1
$\mathrm{Si}(4)-\mathrm{Si}(1)$	3.866	$\mathrm{Si}(4)-\mathrm{Si}(1)-\mathrm{Si}(3)$	36.9

inclination angles of the $\mathrm{Si}-\mathrm{C}$ bonds with respect to the corresponding $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ plane are different on the two sides of the Si_{5} ring and in an opposite sense at sequential Si atoms, with the exception of those at $\mathrm{Si}(1)$ and $\mathrm{Si}(5)$ (Table 7). This feature is similar to that found in OPHCTSI where the differences of the angles are as high as 28°; in the present molecule they are much lower and vary between 4 and 10°. This is a direct consequence of the longer $\mathrm{Si} \cdots$ Si distances; i.e. the phenyl rings are pushed further from the center of the Si_{5} ring and will therefore have the same close packing on both sides of the ring with less movement in the phenyl positions. Puckering may also decrease ring strain in the cyclopentasilane ring; thus the lengths of the $\mathrm{Si}-\mathrm{Si}$ bonds are probably not influenced by strain (cf. bond lengths in OPHCTSI).

The $\mathrm{Si}-\mathrm{C}$ distances (mean $1.895 \AA$, with a maximum deviation of $0.26 \AA$) fall in the range of reported values ($1.84-1.93 \AA$). The phenyl rings are planar and are tilted to the corresponding $\mathrm{Si}-\mathrm{C}$ axis by

Table 6. Dihedral angles $\left({ }^{\circ}\right)$ of the $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ planes (a) with the corresponding $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ planes and (b) with the least-squares plane of the Si_{5} ring

		(a)	(b)
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(12)$	$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)$	87.3	91.9
$\mathrm{C}(18)-\mathrm{Si}(2)-\mathrm{C}(24)$	$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)$	$86 \cdot 5$	$87 \cdot 8$
$\mathrm{C}(30)-\mathrm{Si}(3)-\mathrm{C}(36)$	$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	$79 \cdot 5$	$95 \cdot 9$
$\mathrm{C}(42)-\mathrm{Si}(4)-\mathrm{C}(48)$	$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)$	$86 \cdot 5$	79.6
$\mathrm{C}(54)-\mathrm{Si}(5)-\mathrm{C}(60)$	$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	95.6	88.8

Table 7. Inclination angles $\left({ }^{\circ}\right)$ of the $\mathrm{Si}-\mathrm{C}$ bond pairs to the corresponding $\mathrm{Si}-\mathrm{Si}-\mathrm{Si}$ planes

$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)$	($\mathrm{Si}(1)-\mathrm{C}(6)$	-49.3
	Si(1)-C(12)	$56 \cdot 5$
Si(1)-Si(2)-Si(3)	(Si(2)-C(18)	-58.3
	Si(2)-C(24)	48.1
$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	(Si(3)-C(30)	-50.8
	(Si(3)-C(36)	54.9
$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)$	Si(4)-C(42)	-54.3
	(Si(4)-C(48)	48.3
	(Si(5)-C(54)	56.2
$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	(Si(5)-C(60)	-51.

Table 8. The inclination angles $\left({ }^{\circ}\right)$ of $\mathrm{Si}-\mathrm{C}$ bonds to their phenyl planes

$\mathrm{Si}(1)-\mathrm{C}(6)$	$\mathrm{C}(6) \cdots \mathrm{C}(11)$	7.7
$\mathrm{Si}(1)-\mathrm{C}(12)$	$\mathrm{C}(12) \cdots \mathrm{C}(17)$	$1 \cdot 2$
$\mathrm{Si}(2)-\mathrm{C}(18)$	$\mathrm{C}(18) \cdots \mathrm{C}(23)$	0.4
$\mathrm{Si}(2)-\mathrm{C}(24)$	$\mathrm{C}(24) \cdots \mathrm{C}(29)$	$4 \cdot 3$
$\mathrm{Si}(3)-\mathrm{C}(30)$	$\mathrm{C}(30) \cdots \mathrm{C}(35)$	4.8
$\mathrm{Si}(3)-\mathrm{C}(36)$	$\mathrm{C}(36) \cdots \mathrm{C}(41)$	1.7
$\mathrm{Si}(4)-\mathrm{C}(42)$	$\mathrm{C}(42) \cdots \mathrm{C}(47)$	0.3
$\mathrm{~S}(4)-\mathrm{C}(48)$	$\mathrm{C}(48) \cdots \mathrm{C}(53)$	8.0
$\mathrm{Si}(5)-\mathrm{C}(54)$	$\mathrm{C}(54) \cdots \mathrm{C}(59)$	9.1
$\mathrm{Si}(5)-\mathrm{C}(60)$	$\mathrm{C}(60) \cdots \mathrm{C}(65)$	7.7

Table 9. Dihedral angles $\left(^{\circ}\right.$) of the phenyl planes on the same Si atom

$\mathrm{C}(6) \cdots \mathrm{C}(11)$	$\mathrm{C}(12) \cdots \mathrm{C}(17)$	$74 \cdot 3$
$\mathrm{C}(18) \cdots \mathrm{C}(23)$	$\mathrm{C}(24) \cdots \mathrm{C}(29)$	$75 \cdot 4$
$\mathrm{C}(30) \cdots \mathrm{C}(35)$	$\mathrm{C}(36) \cdots \mathrm{C}(41)$	69.2
$\mathrm{C}(42) \cdots \mathrm{C}(47)$	$\mathrm{C}(48) \cdots \mathrm{C}(53)$	88.7
$\mathrm{C}(54) \cdots \mathrm{C}(59)$	$\mathrm{C}(60) \cdots \mathrm{C}(65)$	$68 \cdot 1$

Table 10. Non bonded $\mathrm{H} \cdots \mathrm{H}$ distances $<2.50 \AA$
The fractional atomic coordinates $\left(\times 10^{3}\right)$ are given in square brackets.

$\mathrm{H}(7)[223,510,35] \cdots \mathrm{H}(17)[221,691,50]$	$2 \cdot 36$
$\mathrm{H}(31)[55,671,258] \cdots \mathrm{H}(49)[43,677,150]$	2.45
$\mathrm{H}(32)[19,601,326] \cdots \mathrm{H}(50)[-12,740,103]$	2.45
$\mathrm{H}(33)[34,442,377] \cdots \mathrm{H}(52)[7,373,447]^{1}$	$2 \cdot 24$
$\mathrm{H}(41)[101,772,130] \cdots \mathrm{H}(55)[114,750,46]$	2.06

Symmetry code: (I) $x, 1-y, \frac{1}{2}+z$.
angles ranging from 0.3 to 9.1° (Table 8). Bond lengths in the phenyl rings are rather distorted but the results do not justify discussion. The angles between the phenyl planes in the SiPh_{2} moieties fall in the range $68 \cdot 1-88.7^{\circ}$ (Table 9) and show greater differences than those in OPHCTSI $\left(78 \cdot 2-84 \cdot 1^{\circ}\right)$.

Close intra- and intermolecular $\mathrm{H} \cdots \mathrm{H}$ distances are listed in Table 10. There is only one intermolecular close contact $<2.50 \AA . \mathrm{H}(19)$ with fractional coordinates ($0.137,0.357,0.176$) is in a peculiar position over the Si_{5} ring maintaining about the same nonbonded distance (2.97 and $3.03 \AA$) with $\mathrm{Si}(2)$ and $\mathrm{Si}(4)$ respectively.

We thank Professor E. Hengge (Institut für Anorganische Chemie der Technische Universität, Graz, Austria) for providing the crystals and for his comments concerning this work, the Science Research Council for a fellowship, Professor Woolfson for hospitality in his department and Dr G. M. Sheldrick (Chemical Laboratory, University of Cambridge, England) for help in refining the structure.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-29.
Beagley, B., Monaghan, J. J. \& Hewitt, T. G. (197I). J. Mol. Struct. 8, 401-411.
Cox, A. P. \& Varma, R. (1966). J. Chem. Phys. 44, 26192625.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Cruickshank, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.

Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, pp. 271-383. New York: John Wiley.
Hurt, C. J., Calabrese, J. C. \& West, R. (1975). J. Organomet. Chem. 91, 273-278.
Karle, J., Hauptman, H. \& Christ, C. L. (1958). Acta Cryst. 11, 757-761.
Main, P. (1976). Crystallographic Computing Techniques, edited by F. R. Ahmed, pp. 97-105. Copenhagen: Munksgaard.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1977). mULTAN 77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. York, England, and Louvain, Belgium.

Nagy, J. (1977). Period. Polytech. Chem. Eng. 21, $211-$ 219.

Párkányi, L., Sasvári, K. \& Barta, I. (1978). Acta Cryst. B34, 883-887.
Sheldrick, G. M. (1977). SHELX 77. A Program for Crystal Structure Determination. Univ. of Cambridge, England.
Smith, Z., Seip, H. M., Hengge, E. \& Bauer, G. (1976). Acta Chem. Scand. Ser. A, 30, 697-702.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1978). B34, 3682-3685

Structure Cristalline de l'Oxymétavincadifformine $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 6}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}$

Par Noël Rodier
Laboratoire de Chimie Minérale, Faculté des Sciences Pharmaceutiques et Biologiques, rue J.-B. Clément, 92290 Châtenay-Malabry, France
René Céolin
Laboratoire de Chimie Minérale, Faculté de Pharmacie, 2bis boulevard Tonnelé, 37032 Tours CEDEX, France
et Guy Croquelois, Nicole Kunesch et Jacques Poisson
Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences Pharmaceutiques et Biologiques, rue J.-B. Clément, 92290 Châtenay-Malabry, France

(Reçu le 9 juin 1978, accepté le 1 août 1978)

Oxymetavincadifformine is orthorhombic, space group $P 22_{1} 2_{1}$, with $a=9.711(3), b=13.812(5), c=$ 13.955 (4) $\AA . Z=4, D_{c}=1.313 \mathrm{~g} \mathrm{~cm}^{-3}$. Data were collected on an automatic diffractometer using Mo $K a$ radiation. The structure was solved by direct methods and refined by a least-squares procedure to a final R of 0.049 for 1887 independent reflections. The H atoms were located and their positional parameters refined. The molecule contains a benzene, two other six-membered rings and two five-membered rings; its shape, rather closed, is stabilized by an intramolecular hydrogen bond.

Introduction

Croquelois, Kunesch \& Poisson (1974) et Croquelois (1975) ont préparé l'oxymétavincadifformine $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ par une transposition oxydative de la vincadifformine sous l'action de l'acide m-chloroperbenzoïque et ont déterminé sa formule stéréochimique. Le but de l'étude cristallographique est de vérifier la structure proposée (Fig. 1).

Le cristal utilisé mesure environ $0,40 \times 0,40 \times 0,24$ mm . Il a été obtenu en taillant à la lame de rasoir un échantillon issu de la recristallisation du produit dans le mélange éther-acétone.

Fig. 1. Oxymétavincadifformine.

[^0]: * Present address: Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525-Budapest, POB 17, Hungary.

[^1]: * Lists of structure factors, hydrogen atomic coordinates, full tables of bond lengths and angles, and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33858 (38 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

